25 research outputs found

    Femtosecond laser crystallization of amorphous Ge

    Get PDF
    Cataloged from PDF version of article.Ultrafast crystallization of amorphous germanium (a-Ge) in ambient has been studied. Plasma enhanced chemical vapor deposition grown a-Ge was irradiated with single femtosecond laser pulses of various durations with a range of fluences from below melting to above ablation threshold. Extensive use of Raman scattering has been employed to determine post solidification features aided by scanning electron microscopy and atomic force microscopy measurements. Linewidth of the Ge optic phonon at 300 cm(-1) as a function of laser fluence provides a signature for the crystallization of a-Ge. Various crystallization regimes including nanostructures in the form of nanospheres have been identified. (C) 2011 American Institute of Physics. [doi:10.1063/1.3601356

    Crystallization of Ge in SiO2 matrix by femtosecond laser processing

    Get PDF
    Cataloged from PDF version of article.Germanium nanocrystals embedded in a siliconoxide matrix has been fabricated by single femtosecond laser pulse irradiation of germanium doped SiO2 thin films deposited with plasma enhanced chemical vapor deposition. SEM and AFM are used to analyze surface modification induced by laser irradiation. Crystallization of Ge in the oxide matrix is monitored with the optic phonon at 300 cm(-1) as a function of laser fluence. Both the position the linewidth of the phonon provides clear signature for crystallization of Ge. In PL experiments, strong luminescence around 600 nm has been observed. (C) 2012 American Vacuum Society. [DOI: 10.1116/1.3677829

    Probing ultrafast energy transfer between excitons and plasmons in the ultrastrong coupling regime

    Get PDF
    Cataloged from PDF version of article.We investigate ultrafast energy transfer between excitons and plasmons in ensembles of core-shell type nanoparticles consisting of metal core covered with a concentric thin J-aggregate (JA) shell. The high electric field localization by the Ag nanoprisms and the high oscillator strength of the JAs allow us to probe this interaction in the ultrastrong plasmon-exciton coupling regime. Linear and nonlinear optical properties of the coupled system have been measured using transient absorption spectroscopy revealing that the hybrid system shows half-plasmonic and half-excitonic properties. The tunability of the nanoprism plasmon resonance provides a flexible platform to study the dynamics of the hybrid state in a broad range of wavelengths. (C) 2014 AIP Publishing LLC

    Electrochemically tunable ultrafast optical response of graphene oxide

    Get PDF
    Cataloged from PDF version of article.We demonstrate reversible and irreversible changes in the ultrafast optical response of multilayer graphene oxide thin films upon electrical and optical stimulus. The reversible effects are due to electrochemical modification of graphene oxide, which allows tuning of the optical response by externally applied bias. Increasing the degree of reduction in graphene oxide causes excited state absorption to gradually switch to saturable absorption for shorter probe wavelengths. Spectral and temporal properties as well as the sign of the ultrafast response can be tuned either by changing the applied bias or exposing to high intensity femtosecond pulses. © 2011 American Institute of Physics

    Encapsulation of a zinc phthalocyanine derivative in self-assembled peptide nanofibers

    Get PDF
    Cataloged from PDF version of article.In this article, we demonstrate encapsulation of octakis(hexylthio) zinc phthalocyanine molecules by non-covalent supramolecular organization within self-assembled peptide nanofibers. Peptide nanofibers containing octakis(hexylthio) zinc phthalocyanine molecules were obtained via a straight-forward one-step self-assembly process under aqueous conditions. Nanofiber formation results in the encapsulation and organization of the phthalocyanine molecules, promoting ultrafast intermolecular energy transfer. The morphological, mechanical, spectroscopic and non-linear optical properties of phthalocyanine containing peptide nanofibers were characterized by TEM, SEM, oscillatory rheology, UV-Vis, fluorescence, ultrafast pump-probe and circular dichroism spectroscopy techniques. The ultrafast pump-probe experiments of octakis(hexylthio) zinc phthalocyanine molecules indicated pH controlled non-linear optical characteristics of the encapsulated molecules within self-assembled peptide nanofibers. This method can provide a versatile approach for bottom-up fabrication of supramolecular organic electronic devices. © 2012 The Royal Society of Chemistry

    Ultrafast transient optical loss dynamics in exciton-plasmon nano-assemblies

    Get PDF
    We study the exciton-plasmon dynamics that lead to optical loss mitigation via ultrafast transient absorption spectroscopy (UTAS) on hybrid aggregates of core-shell quantum dots (QDs) and Au nanoparticles (NPs). We highlight that generating hot electrons in plasmonic NPs contributes to the transient differential absorption spectrum under optical excitation. The results suggest modifying the method of analyzing the transient absorption spectra of loss mitigated systems. Additionally, we investigate the effect of Electron Oscillation frequency-Phonon Resonance Detuning (EOPRD) on loss mitigation efficiency. Moreover, power dependent UTAS reveal a frequency pulling like effect in the transient bleach maximum towards the gain emission. We show that the appropriate choice of the pump wavelength and by changing the pump power we can conclusively prove the existence of loss mitigation using UTAS. Finally, we study the transient kinetics of hybrid gain-plasmon systems and report interesting hybrid transient kinetics. © 2017 The Royal Society of Chemistry

    Enhancement of two photon absorption properties and intersystem crossing by charge transfer in pentaaryl boron-dipyrromethene (BODIPY) derivatives

    No full text
    Novel BODIPY derivatives containing N,N-diphenylamine, 4-methoxyphenyl, 2,4-dimethoxyphenyl, triphenylamine, and 1-pyrene moieties were designed and synthesized for the first time by employing the palladium-catalyzed Suzuki-Miyaura coupling on pentaaryl boron dipyrromethene compounds. The effect of various moieties and charge transfer on linear and nonlinear optical absorption was investigated. It was found that moieties with strong electron donor properties and long conjugation lengths increase charge transfer and enhance intersystem crossing in the investigated compounds. Besides, the investigated compounds showed strong two photon absorption properties at near infrared wavelengths (800 nm and 900 nm), which is required for two photon photodynamic therapy. Two photon absorption cross section values were found to be 83, 454, 331, 472 and 413 GM for B1, B2, B3, B4 and B5 compounds at 800 nm wavelength, respectively. The highest two-photon absorption cross-section value was obtained for the B4 compound containing a triphenylamine moiety due to its more efficient charge transfer characteristics. Strong two-photon absorption properties in the near infrared region, efficient intersystem crossing and heavy atom free nature of the investigated compounds make them good candidates for two photon photodynamic therapy applications. We believe that this work will be one of the leading studies for two-photon photodynamic therapy applications of pentaaryl BODIPY derivatives

    Fabrication of Supramolecular n/p-Nanowires via Coassembly of Oppositely Charged Peptide-Chromophore Systems in Aqueous Media

    No full text
    Fabrication of supramolecular electroactive materials at the nanoscale with well-defined size, shape, composition, and organization in aqueous medium is a current challenge. Herein we report construction of supramolecular charge-transfer complex one-dimensional (1D) nanowires consisting of highly ordered mixed-stack pi-electron donor-acceptor (D-A) domains. We synthesized n-type and p-type beta-sheet forming short peptide-chromophore conjugates, which assemble separately into well-ordered nanofibers in aqueous media. These complementary p-type and n-type nanofibers coassemble via hydrogen bonding, charge-transfer complex, and electrostatic interactions to generate highly uniform supramolecular n/p-coassembled 1D nanowires. This molecular design ensures highly ordered arrangement of D-A stacks within n/p-coassembled supramolecular nanowires. The supramolecular n/p-coassembled nanowires were found to be formed by A D-A unit cells having an association constant (K-A) of 5.18 x 10(5) M-1. In addition, electrical measurements revealed that supramolecular n/p-coassembled nanowires are approximately 2400 and 10 times more conductive than individual n-type and p-type nanofibers, respectively. This facile strategy allows fabrication of well-defined supramolecular electroactive nanomaterials in aqueous media, which can find a variety of applications in optoelectronics, photovoltaics, organic chromophore arrays, and bioelectronics
    corecore